Logo

    Membrane proteins and drug development

    enApril 29, 2013
    What was the main topic of the podcast episode?
    Summarise the key points discussed in the episode?
    Were there any notable quotes or insights from the speakers?
    Which popular books were mentioned in this episode?
    Were there any points particularly controversial or thought-provoking discussed in the episode?
    Were any current events or trending topics addressed in the episode?

    About this Episode

    Dr Liz Carpenter talks about her research on membrane proteins and drug development. Membrane proteins are the gateways to our cells - with nutrients, waste products, and even DNA and proteins entering and leaving cells via these tightly controlled proteins. Drugs often target membrane proteins; therefore, understanding their molecular structure helps us design better drugs. Dr Liz Carpenter uses X-ray crystallography to solve membrane protein structures. This information is then used to improve treatments for heart disease and neurological diseases.

    Recent Episodes from Translational and Clinical

    Tracking infections

    Tracking infections
    Professor Derrick Crook from our Experimental Medicine division tells us about his research on tracking infections Professor Derrick Crook's research consortium focusses on translating new molecular technologies and advances in informatics into the investigation of microbial transmission, diagnosis of infectious disease and identifying outbreaks of communicable disease. This research aims to translate deep sequencing of pathogens on an epidemiological scale for tracking infections, and is focussed on four different major pathogens: Staphylococcus aureus (including MRSA), Clostridium difficile, Norovirus and Mycobacterium tuberculosis. Understanding how an infection spreads is vitally important for prevention. Whole genome sequencing of microorganisms allows us to construct family trees of infections, from donnor to recipients, and understand how microbes behave in general. Through its genetic code, we can also predict whether a germ is susceptible or resistant to a specific antibiotic, and give patients a more stratified and personalised treatment.

    Why we work on Alzheimer’s disease

    Why we work on Alzheimer’s disease
    Housed within the Target Discovery Institute, the Alzheimer’s Research UK Oxford Drug Discovery Institute (ODDI) juxtaposes drug discovery expertise alongside scientific and academic understanding of patients, disease mechanisms and model systems. The burden caused by Alzheimer’s disease and other dementias represents one of the biggest problems for our healthcare systems. The last medicine was approved in 2002 and today we only have symptomatic treatments. ARUK-ODDI brings together chemists, biologist, psychiatrists and neuroscientists, many of them with pharmaceutical background, aiming to accelerate the discovery of novel and effective treatments.

    X-rays for drug discovery

    X-rays for drug discovery
    Professor Frank von Delft works to ensure that X-ray structures can serve as a routine and predictive tool for generating novel chemistry for targeting proteins. In the process of drug discovery, X-ray crystallography is the most sensitive way to find out which compounds bind to a target protein. Recent advances in technology allow researchers to test many more compounds, much more rapidly. The ultimate aim is to bring much needed new treatments to patients.

    From information to structure

    From information to structure
    Dr Brian Marsden aims to make structural and chemical biology data accessible to non-experts, by providing computational resources including data management, sample tracking, in silico modelling support plus provision of public access to SGC data. Protein structures are powerful tools in the development of medical drugs, but they are not very accessible to non-specialists. Research informatics presents these structures more simply and interactively, and helps scientists make decisions. This will hopefully accelerate the development of new medicines.

    Unravelling proteins

    Unravelling proteins
    Dr Nicola Burgess-Brown heads the Biotechnology Group at the SGC, which generates proteins suitable for structural and functional studies. Recombinant protein expression in host cells such as bacterial or insect cells facilitates the production of large amounts of proteins, which can be used for crystallisation to obtain the protein structure, or in cellular assays to look at their function. Collaborations with partners such as academics, industry and patient groups aim to find compounds that can be developed into potential drugs.

    Targeting drug discovery

    Targeting drug discovery
    The development of new medicines is dependent on the identification of novel drug targets. CHEMICAL BIOLOGY In the search for new medicines for cancer or inflammatory disorders, small molecules are invaluable tools for testing the activity of possible target proteins. Those small chemical compounds can also affect the morphology and phenotype of cell samples collected from patients, opening the possibility to develop new therapeutics.

    Understanding growth signals

    Understanding growth signals
    Growth hormones and cytokines regulate the key physiological processes of growth and differentiation as well as responses to injury and infection. FIBRODYSPLASIA OSSIFICANS PROGRESSIVA Growth factors and signals are fundamental to many diseases. A single point mutation in the DNA coding for a bone morphogenetic protein is responsible for the development of FOP, a very debilitating disease where muscles are progressively turned into bones. Understanding these mechanisms allowed the selection of a drug, currently used to treat cancer, that may possibly be repurposed to treat FOP.

    Inflammation in disease

    Inflammation in disease
    The main aim of Dr Xue's research is to understand the molecular and cellular mechanisms mediating inflammatory diseases, and to translate their findings into therapeutic concepts to treat these diseases. Drugs and treatments for inflammatory diseases are scarce and often induce major side effects. A better understanding of the molecular mechanisms governing inflammatory diseases would allow us to develop new drug and treatments, at great benefit for both patients and the NHS.

    A deep breath in

    A deep breath in
    Asthma and COPD (chronic obstructive pulmonary disease) are common conditions that affect the lives of many people. Dr Mona Bafadhel studies the pathophysiology of COPD (chronic obstructive pulmonary disease). There are broadly two inflammatory phenotypes of COPD that are clinically indistinguishable but have different treatment responses. Dr Bafadhel is working on the development of novel therapeutic strategies for COPD, particularly to treat the regular periods of worsened symptoms that patients experience.

    Chemistry, epigenetics and drugs

    Chemistry, epigenetics and drugs
    Alteration of gene expression is fundamental to many diseases. A better understanding of how epigenetic proteins affect diseases provides a starting point for therapy development and the discovery of new drug. Professor Paul Brennan research focusses on epigenetics: the mechanisms that control gene expression. He studies how chemical probes interfere with epigenetic enyzmes that can be targeted to treat various diseases. Epigenetics combined with disease biology will ultimately accelerate drug discovery.
    Logo

    © 2024 Podcastworld. All rights reserved

    Stay up to date

    For any inquiries, please email us at hello@podcastworld.io