Logo

    Source-dependent variations of M7 earthquakes in the Los Angeles Basin

    deOctober 15, 2007
    What was the main topic of the podcast episode?
    Summarise the key points discussed in the episode?
    Were there any notable quotes or insights from the speakers?
    Which popular books were mentioned in this episode?
    Were there any points particularly controversial or thought-provoking discussed in the episode?
    Were any current events or trending topics addressed in the episode?

    About this Episode

    Deterministic earthquake scenario simulations are playing an increasingly important role in seismic hazard and risk estimation. The numerical calculation of the complete 3D wavefield in the observed frequency band for a seismically active basin remains a computationally expensive task. This expense restricts seismologists either to calculating source models with homogeneous media (e.g., Gallovic and Brokesoová, 2004, 2007a,b), or to calculating single source scenario in 3D media (e.g., Olsen and Archuleta, 1996; Olsen, 2000; Ewald et al., 2006) while the complex effects of the media and the source on the ground motion are getting more and more attention. At the same time, with the development of the instrument, ground rotation introduced by an earthquake becomes a more and more important topic. Our aim is to provide a tool with which we can calculate a large number of different finite-source scenarios for a particular fault or fault system located in a 3D structure which will enable us to estimate ground motion (translation and rotation) variations due to source and 3D structure. In order to avoid having to run numerical expensive 3D code for each kinematic source scenario we propose the concept of “numerical Green’s functions” (NGF): a large seismic fault is divided into sub-faults of appropriate size for which synthetic Green’s functions at the surface of the seismically active area are calculated and stored. Consequently, ground motions from arbitrary kinematic sources can be simulated for the whole fault or parts of it by superposition. To demonstrate the functionalities of the method a strike-slip NGF data base was calculated for a simplified vertical model of the Newport-Inglewood fault in the Los Angeles basin. As a first example, we use the data base to estimate variations of surface ground motion (e.g., peak ground velocity (PGV)) due to hypocentre location for a given final slip distribution. The results show a complex behavior, with dependence of absolute PGV and its variation on asperity location, directivity effect and local under-surface structure. Hypocentral depth may affect peak ground velocity in a positive or negative way depending on the distance from the fault and the receiver location with respect to basin structure. Finite-fault source inversions reveal the spatial complexity of earthquake slip over the fault plane. In this study, several possible earthquake scenarios of Mw 7.0 are simulated with different quasi-dynamic finite source models for the Newport-Inglewood fault in the Los Angeles basin. We investigate the effects of the various slip histories on peak ground velocities and the related variations in ground motion prediction for our study area. The results confirm that the fault perpendicular components of motion are dominated by directivity effects while the fault parallel component is influenced both by the slip distribution and the basin structure. There are theoretical considerations suggesting that observations/calculations of the rotation part of earthquake-induced ground motions may provide additional information for earthquake risk hazard analysis after reports on rotational effects on structures (like twisting of tombstones or statues). For the first time, we carry out a systematic study of earthquake scenario simulations in 3D media with a specific focus on the rotational part of the motions. We simulate several M7 earthquakes with various hypocentre locations and slip histories on the Newport-Inglewood fault embedded in the 3D Los Angeles Basin. We investigate source and basin structure effects on the rotational components of ground motion (e.g., peak ground rotation rates and their variation, horizontal gradients) and compare with the effects on translations. Igel et al. (2005) shows a similarity of the observed waveforms between transverse acceleration and the vertical rotation rate in the teleseismic range benefiting from the recently developed ring laser instruments. The vertical rotation rate is found to be surprisingly similar to the horizontal translations in waveform which is explained with the plane wave propagation in the global range. That condition could not be hold any more in the near-field range, but some information could be extracted from the comparison between the translations and the rotation rate. As a final application, we investigate the source-dependent variations on rotational ground motions and compare with the results for translations. The thesis is structured as follows: Chapter 1: An insight into the present standard procedures carried out in the Seismic Hazard Assessment (SHA) is shown and then the different methodologies for predicting ground motions are described and compared, which are working individually or cooperate with each other. In recent years, one of those methods – deterministic calculations have been used widely and its consumption both in terms of CPU time and memory motivated the development of one new tool. We name that tool Numerical Green’s Function (NGF) method. Chapter 2: An introduction to the different solutions of the wave propagation is given and the state-of-the-art technologies are described. We will introduce in detail the techniques adopted. We show how to implement the source, how to solve the wave propagation problem, and how to efficiently absorb the energies outgoing from the working area, or reflect them at the free surface boundary. To correctly account for the rupture process, which has been found to be the most important contributor to the ground motion in the near-source region, different tools are developed which can be divided into two groups: kinematic description and dynamic description of the source. These two descriptions are briefly compared. Then we focus on the “quasi-dynamic” method developed by Guatteri et al. (2004) which combines, to some extent, the two different approaches. This method is used to provide us the rupture processes we will consider. Chapter 3: Green’s function stands for the response on the surface due to an impulse dislocation at the source. A large earthquake rupture can be represented with a group of impulse dislocations, and thus the ground motion on the surface can be achieved by the superposition of its Green’s functions. In this chapter, we follow the representation theorem published in Aki and Richards (2002) to give the theoretical basis of that method and briefly describe the two groups of that method: composite method and integral method. Finally we introduce our new method – Numerical Green’s Function, present the basic equations and analyze its relationship with the representation theorem and empirical Green’s function method. Chapter 4: Discretization of the fault plane into elements and assumption the source parameters identical inside each element will introduce errors in the calculated seismic motions and these errors are expected to depend on some few parameters such as the fault geometry, the rupture velocity, the sub-fault size, the cut-off frequency for low-pass filtering the ground motions, the directivity effect, etc.. In this chapter we design a hypothetic velocity structure and investigate how the errors introduced by the fault discretization will change with those parameters. The results are considered to provide some clues for our next step – selecting a seismic active fault and discretizing it into pieces with optimal sizes for which the Green’s functions will be calculated and stored. Chapter 5: The working area of this study, the Newport Inglewood fault embedded in the Los Angeles basin is introduced. The Los Angeles basin is chosen as our working area because of the high seismicity and that the most reliable information about the subsurface structure could be achieved. One active fault, the Newport-Inglewood fault inside this region is considered as a possible place where an M7.4 earthquake could happen in the future decades. Also its near vertical straight fault plane facilitates the implementation of this fault into the finite difference method. After choosing the fault and velocity structure, we re-address the optimal size of sub-fault by simulating a few M7 earthquakes and investigate the peak ground velocity and the waveform difference introduced by the different discretizations. The importance of the directivity effect on the ground motion in the near-source region has been recognized and is one of the main targets of the next generation of the attenuation relationship. A brief introduction to the physics of wave propagation is given in order to make the following discussions and illustrations of our results understandable for readers without previous knowledge. We analyze the different directivity effect supposed to happen between different component, or different kinds of motion (translation and rotation). Chapter 6: This chapter addresses the problem of the variations of surface ground motion (e.g., peak ground velocity) due to hypocentre location for a given final slip distribution. A complex behavior about the dependence of absolute PGV and its variation on asperity location, directivity effect and local structure is presented. Hypocentral depth may affect PGV in a positive or negative way depending on the distance from the fault and the location with respect to the basin structure. The directivity effect is found to control the seismic motion generation for a specific final slip distribution. Chapter 7: Inversions of the spatial and temporal evolution of earthquake slip on fault planes provide compelling evidence that fault displacement is spatially variable at all resolvable scales. Investigations of strong ground motion also indicate the spatial variability of the rupture velocity. This source physics complexity appeals for thorough description of the source process when calculating seismic motion. The method developed before hand allows efficient simulation of arbitrary slip histories. In this chapter, we investigate how the various slip histories affect peak ground velocities and the related variations in ground motion prediction for our study area. The fault perpendicular components of motion are confirmed to be dominated by directivity effects while the fault parallel component is influenced both by the slip distribution and the basin structure. Chapter 8: The rotational motions excited by earthquakes are believed to be capable of providing more information for the aim of earthquake hazard analysis. But to the present time, those information are hard to be acquired. The first reason is that the spacing of the accelerograph recording sites is too large to get the indirect rotational motion measurement from the accelerograph recordings. The second reason is that the small amplitude of the rotational motion is beyond the recording capability of the present instruments. At the present time, the answers lie in the numerical simulation. In this section, for an M7.0 earthquake which is considered to happen on the Newport-Inglewood fault embedded in the Los Angeles basin, different parameters responsible for the ground rotation variation, like the hypocentre location, directivity effect and slip history, are systematically investigated. In the teleseismic range where plane wave assumption can be made, Igel et al. (2005) investigates the relationship between the translation and the rotation in terms of the amplitude ratio and waveform similarity. In this section, we find the waveform similarity between one horizontal acceleration and the vertical rotation rate even in the near-source region. We also calculate the amplitude ratio between the acceleration and the rotation rate and compare the results with the medium properties. That ratio is found to be somehow correlative to the basin depth. Chapter 9: The most important results in this work are briefly summarized. Future promising prospectives are also described. Appendix A: The individual peak ground velocity distributions corresponding to the varying hypocentres of the grid presented in chapter 6 are presented as a table for better illustration in case of interest. Three components of velocity and rotation rates are summarized here. Appendix B: The peak ground velocity distributions are grouped into different tables corresponding to the varying slip histories (chapter 7). Three components of velocity and rotation rate are summarized here.

    Recent Episodes from Fakultät für Geowissenschaften - Digitale Hochschulschriften der LMU

    Entwicklung und Anwendung von Hochleistungs-Software für Mantelkonvektionssimulationen

    Entwicklung und Anwendung von Hochleistungs-Software für Mantelkonvektionssimulationen
    The Earth mantle convects on a global scale, coupling the stress field at every point to every other location at an instant. This way, any change in the buoyancy field has an immediate impact on the convection patterns worldwide. At the same time, mantle convection couples to processes at scales of a few kilometers or even a few hundred meters. Dynamic topography and the geoid are examples of such small-scale expressions of mantle convection. Also, the depth of phase transitions varies locally, with strong influences on the buoyancy, and thus the global stress field. In order to understand these processes dynamically it is essential to resolve the whole mantle at very high numerical resolutions. At the same time, geodynamicists are trying to answer new questions with their models, for example about the rheology of the mantle, which is most likely highly nonlinear. Also, due to the extremely long timescales we cannot observe past mantle states, which calls for simulations backwards in time. All these issues lead to an extreme demand in computing power. To cater to those needs, the physical models of the mantle have to be matched with efficient solvers and fast algorithms, such that we can efficiently exploit the enormous computing power of current and future high performance systems. Here, we first give an extensive overview over the physical models and introduce some numerical concepts to solve the equations. We present a new two-dimensional software as a testbed and elaborate on the implications of realistic mineralogic models for efficient mantle convection simulations. We find that phase transitions present a major challenge and suggest some procedures to incorporate them into mantle convection modeling. Then we give an introduction to the high-performance mantle convection prototype HHG, a multigrid-based software framework that scales to some of the fastest computers currently available. We adapt this framework to a spherical geometry and present first application examples to answer geodynamic questions. In particular, we show that a very thin and very weak asthenosphere is dynamically plausible and consistent with direct and indirect geological observations.

    Molecular biology of octocoral mitochondria

    Molecular biology of octocoral mitochondria
    The mitochondria of non-bilaterian metazoans display a staggering diversity of genome organizations and also a slow rate of mtDNA evolution, unlike bilaterians, which may hold a key to understand the early evolution of the animal mitochondrion. Octocorals are unique members of Phylum Cnidaria, harboring several atypical mitochondrial genomic features, including a paucity of tRNA genes, various genome arrangements and the presence of novel putative mismatch repair gene (mtMutS) with various potential biological roles. Thus octocorals represents an interesting model for the study of mitochondrial biology and evolution. However, besides its utility in molecular phylogenetics, the mtDNA of octocorals is not studied from the perspective of DNA repair, oxidative stress response or gene expression; and there is a general lack of knowledge on the DNA repair capabilities and role of the mtMutS gene, response to climate-change, and mtDNA transcription in absence of interspersed tRNA genes of octocoral mitochondrial genome. In order to put the observed novelties in the octocoral mitochondria in an evolutionary and an environmental context, and to understand their potential functions and the consequences of their presence in conferring fitness during climate change induced stress, this study was undertaken. This dissertation aims to explore the uniqueness and diversity of octocoral mtDNA from an environmental as well as an evolutionary perspective. The thesis comprises five chapters exploring various facets of octocoral biology. The introductory section provides basic information and elaborates on the importance of studying non-bilaterian mitochondria. The first chapter sets the base for subsequent gene expression studies. Octocorals are extensively studied from a taxonomic and phylogenetic point of view. However, gene expression studies on these organisms have only recently started to appear. To successfully employ the most commonly used gene expression profiling technique i.e., the quantitation real-time PCR (qPCR), it is necessary to have an experimentally validated, treatment-specific set of stably expressed reference genes that will support for the accurate quantification of changes in expression of genes of interest. Hence, seven housekeeping genes, known to exhibit constitutive expression, were investigated for expression stability during simulated climate-changed (i.e. thermal and low-pH) induced stress. These genes were validated and subsequently used in gene expression studies on Sinularia cf. cruciata, our model octocoral. The occurrence of a mismatch repair gene, and the slow rates of mtDNA evolution in octocoral mitogenome calls for further investigations on the potential robustness of octocoral mitochondria to the increased oxidative stress. The second chapter presents a mitochondrion-centric view of climate-change stress response by investigating mtDNA damage, repair, and copy number dynamics during stress. The changes in gene expression of a set of stress-related nuclear, and mitochondrial genes in octocorals were also monitored. A robust response of octocoral mitochondria to oxidative mtDNA damage was observed, exhibiting a rapid recovery of the damaged mtDNA. The stress-specific regulation of the mtMutS gene was detected, indicating its potential involvement in stress response. The results highlight the resilience potential of octocoral mitochondria, and its adaptive benefits in changing oceans. The tRNA genes in animal mitochondria play a pivotal role in mt-mRNA processing and maturation. The influence of paucity of tRNA genes on transcription of the mitogenome in octocorals has not been investigated. The third chapter steps in the direction to understand the mitogenome transcription by investigating the nature of mature mRNAs. Several novel features not present in a “typical” animal mt-mRNAs were detected. The majority of the mitochondrial transcripts were observed as polycistronic units (i.e. the mRNA carrying information for the synthesis of more than one protein). 5’ and 3’ untranslated regions were delineated for most protein-coding genes. Alternative polyadenylation (APA) of mtMutS gene and long non-coding RNA (lncRNA) for ATP6 were detected and are reported for the first time in non-bilaterian metazoans providing a glimpse into the complexity and uniqueness of mtDNA transcription in octocorals. The mismatch repair (MMR) mechanism plays a crucial role in mutation avoidance and maintenance of genomic integrity. Its occurrence in animal mitochondria remains equivocal. Octocorals are the only known animals to posses an mtDNA-encoded MMR gene, the mtMutS, speculated to have self-contained DNA repair capability. In order to gain knowledge of the MMR activity in the octocoral mitochondria MMR assays using the octocoral mitochondrial fraction is necessary. A prerequisite for this assay is the availability of an MMR-substrate, which is a DNA fragment, usually a plasmid, containing the desired mismatch lesion (i.e. a heteroduplex) and a nicked strand. However, the methods to prepare such a substrate are time consuming and technically demanding. Chapter four describes two convenient and flexible strategies that can be used in parallel to prepare heteroduplex MMR substrate using a common plasmid and routine molecular biology techniques. This method should aid in MMR investigations in general, helping to advance this field of research. The mtMutS gene mentioned above is a bacterial homolog, predicted to have been horizontally transferred to the octocoral mitogenome. However, unlike the bacterial mutS, which is extensively studied, protein expression studies of the octocoral mtMutS gene are lacking. To investigate the biological role of the mtMutS protein, in vitro, and to gain knowledge on its structure and function, the expression of the gene in a bacterial host is necessary. The fifth chapter discusses the characteristics of the mtMutS protein, the efforts to express it in E. coli and some necessary precautions to be taken while working with the expression of such mtDNA-encoded proteins for the research in future. This dissertation elucidates and contributes to the understanding of the unexplored complexity of non-bilaterian mitochondria. It deals for the first time with DNA repair, gene expression and gene function, encompassing an integrative analysis of DNA, RNA and proteins to achieve its goals. This study forms the basis for many future investigations on the molecular mitochondrial biology of octocorals as well as other non-bilaterians, augmenting the understanding of the evolution of animal mitochondria, and also its role in cellular and organismal homeostasis in the context of environmental change.

    An integrative approach using remote sensing and social analysis to identify different settlement types and the specific living conditions of its inhabitants

    An integrative approach using remote sensing and social analysis to identify different settlement types and the specific living conditions of its inhabitants
    Someday in 2007, the world population reached a historical landmark: for the first time in human history, more than half of the world´s population was urban. A stagnation of this urbanization process is not in sight, so that by 2050, already 70 percent of humankind is projected to live in urban settlements. Over the last few decades, enormous migrations from rural hinterlands to steadily growing cities could be witnessed coming along with a dramatic growth of the world’s urban population. The speed and the scale of this growth, particularly in the so called less developed regions, are posing tremendous challenges to the countries concerned as well as to the world community. Within mega cities the strongest trends and the most extreme dimensions of the urbanization process can be observed. Their rapid growth results in uncontrolled processes of fragmentation which is often associated with pronounced poverty, social inequality, socio-spatial and political fragmentation, environmental degradation as well as population demands that outstrip environmental service capacity. For the majority of the mega cities a tremendous increase of informal structures and processes has to be observed. Consequentially informal settlements are growing, which represent those characteristic municipal areas being subject to particularly high population density, dynamics as well as marginalization. They have quickly become the most visible expression of urban poverty in developing world cities. Due to the extreme dynamics, the high complexity and huge spatial dimension of mega cities, urban administrations often only have an obsolete or not even existing data basis available to be at all informed about developments, trends and dimensions of urban growth and change. The knowledge about the living conditions of the residents is correspondingly very limited, incomplete and not up to date. Traditional methods such as statistical and regional analyses or fieldwork are no longer capable to capture such urban process. New data sources and monitoring methodologies are required in order to provide an up to date information basis as well as planning strate¬gies to enable sustainable developments and to simplify planning processes in complex urban structures. This research shall seize the described problem and aims to make a contribution to the requirements of monitoring fast developing mega cities. Against this background a methodology is developed to compensate the lack of socio-economic data and to deduce meaningful information on the living conditions of the inhabitants of mega cities. Neither social science methods alone nor the exclusive analysis of remote sensing data can solve the problem of the poor quality and outdated data base. Conventional social science methods cannot cope with the enormous developments and the tremendous growth as they are too labor-, as well as too time- and too cost-intensive. On the other hand, the physical discipline of remote sensing does not allow for direct conclusions on social parameters out of remote sensing images. The prime objective of this research is therefore the development of an integrative approach − bridging remote sensing and social analysis – in order to derive useful information about the living conditions in this specific case of the mega city Delhi and its inhabitants. Hence, this work is established in the overlapping range of the research topics remote sensing, urban areas and social science. Delhi, as India’s fast growing capital, meanwhile with almost 25 million residents the second largest city of the world, represents a prime example of a mega city. Since the second half of the 20th century, Delhi has been transformed from a modest town with mainly administrative and trade-related functions to a complex metropolis with a steep socio-economic gradient. The quality and amount of administrative and socio-economic data are poor and the knowledge about the circumstances of Delhi’s residents is correspondingly insufficient and outdated. Delhi represents therefore a perfectly suited study area for this research. In order to gather information about the living conditions within the different settlement types a methodology was developed and conducted to analyze the urban environment of the mega city Delhi. To identify different settlement types within the urban area, regarding the complex and heterogeneous appearance of the Delhi area, a semi-automated, object-oriented classification approach, based on segmentation derived image objects, was implemented. As the complete conceptual framework of this research, the classification methodology was developed based on a smaller representative training area at first and applied to larger test sites within Delhi afterwards. The object-oriented classification of VHR satellite imagery of the QuickBird sensor allowed for the identification of five different urban land cover classes within the municipal area of Delhi. In the focus of the image analysis is yet the identification of different settlement types and amongst these of informal settlements in particular. The results presented within this study demonstrate, that, based on density classes, the developed methodology is suitable to identify different settlement types and to detect informal settlements which are mega urban risk areas and thus potential residential zones of vulnerable population groups. The remote sensing derived land cover maps form the foundation for the integrative analysis concept and deliver there¬fore the general basis for the derivation of social attributes out of remote sensing data. For this purpose settlement characteristics (e.g., area of the settlement, average building size, and number of houses) are estimated from the classified QuickBird data and used to derive spatial information about the population distribution. In a next step, the derived information is combined with in-situ information on socio-economic conditions (e.g., family size, mean water consumption per capita/family) extracted from georeferenced questionnaires conducted during two field trips in Delhi. This combined data is used to characterize a given settlement type in terms of specific population and water related variables (e.g., population density, total water consumption). With this integrative methodology a catalogue can be compiled, comprising the living conditions of Delhi’s inhabitants living in specific settlement structures – and this in a quick, large-scaled, cost effective, by random or regularly repeatable way with a relatively small required data basis.The combined application of remotely sensed imagery and socio-economic data allows for the mapping, capturing and characterizing the socio-economic structures and dynamics within the mega city of Delhi, as well as it establishes a basis for the monitoring of the mega city of Delhi or certain areas within the city respectively by remote sensing. The opportunity to capture the condition of a mega city and to monitor its development in general enables the persons in charge to identify unbeneficial trends and to intervene accordingly from an urban planning perspective and to countersteer against a non-adequate supply of the inhabitants of different urban districts, primarily of those of informal settlements. This study is understood to be a first step to the development of methods which will help to identify and understand the different forms, actors and processes of urbanization in mega cities. It could support a more proactive and sustainable urban planning and land management – which in turn will increase the importance of urban remote sensing techniques. In this regard, the most obvious and direct beneficiaries are on the one hand the governmental agencies and urban planners and on the other hand, and which is possibly the most important goal, the inhabitants of the affected areas, whose living conditions can be monitored and improved as required. Only if the urban monitoring is quickly, inexpensively and easily available, it will be accepted and applied by the authorities, which in turn enables for the poorest to get the support they need. All in all, the listed benefits are very convincing and corroborate the combined use of remotely sensed and socio-economic data in mega city research.

    Genetic diversity of selected petrosiid sponges

    Genetic diversity of selected petrosiid sponges
    Sponges are simple animals that mostly inhabit the marine ecosystem. The role of sponges in the marine ecosystem and the potential of their bioactive compounds for the pharmaceutical industry have already been reviewed. Because of the extensive investigations of sponges within those two disciplines, marine ecology and chemistry, sponges are among the best-studied Metazoa. Likewise, sponges have been selected as animal models for investigating the origin of the multicellularity because sponges have a simple body structure and physiology (e.g., lack of nervous and circulatory organs). Due to their diversity and abundance in the tropics, particularly in the Indo-Pacific, sponges have also attracted taxonomists, systematists and ecologists to assess their diverseness and their phylogenetic and phylogeographic relationships. Resolving those research questions is difficult, because sponges are categorised as comparatively character poor taxa. By using only conservative taxonomy or systematics, the sponge diversity might therefore be underestimated. Inevitably, sponge biologists have to employ molecular methods as additional tools. In this research, molecular tools were used in order to analyse the taxonomy, phylogeny and phylogeographic relationships of selected sponge species. Xestospongia testudinaria & Neopetrosia exigua (Family Petrosiidae, Order Haplosclerida) were selected because of their conspicuousness in the Indo-Pacific coral reef ecosystems, whereby Xestospongia testudinaria is prominently known as the Indo-Pacific giant barrel sponge. Additionally, the order Haplosclerida has been described as an example of sponge order that has been examined systematically for a number of years and displays major discrepancy between morphology and molecular phylogenies. Molecular data suggests that the order needs revision at all taxonomic levels, which is the cause for further conflicts between taxonomists and systematists. In my research I focused mostly on sponge samples that originated from South East Asia or the Indo-Australian Archipelago (IAA). This region represents one of the best-explored marine regions in the Indo-Pacific. The aim of my research is to discover to what extent molecular tools are suitable to detect a phylogenetic signal, a phylogeographical break or a genotypic difference in the two selected sponge taxa. Several markers from the mitochondrial (mtDNA), ribosomal (rRNA) and nuclear (nucDNA) have been utilised. The 3' partition of the cytochrome oxidase subunit 1 (I3-M11 of cox1) from the mtDNA could be used to detect a genetic structure in Xestospongia testudinaria in a geographical narrow scale study of < 200 km2 in Lembeh, North Sulawesi, Indonesia (Chapter 6) and throughout the Indo-Pacific despite limitations in the sample datasets (Chapter 2). In addition, the presence of a species complex in X. testudinaria was detected with the aid of phylogenetic reconstructions from a concatenation of mtDNA sequences (I3-M11 of cox1 and the Adenosine Triphosphate Synthase F0 subunit 6 / ATP6), and a nucDNA marker, the Adenosine Triphosphate Synthase β subunit intron (ATPS-β intron) (Chapter 6). At the same time, the presence of a species complex in X. testudinaria was recognised in a broader scale study of the Indo-Australian Archipleago (IAA) (Chapter 3). As a result, selected mtDNA and nucDNA markers in this thesis are useful for the investigation of the taxonomical status and phylogeographical relationships of X. testudinaria. A phylogeographical break in the IAA region due to the Pleistocene low sea level and Holocene recolonisation events (Chapter 3) could not be recovered among X. testudinaria in a phylogeographical analysis. Similarly, overlapping I3-M11 cox1 haplotypes between X. testudinaria, X. muta and X. bergquistia were recovered. This might be due to the presence of ancient polymorphisms on the barrel sponge mtDNA markers. Molecular tools are also used to help identifying my second selected sponge species (Chapter 4). The use of selected cox2 mtDNA and 28S rRNA markers contributed significantly to the identification of. Neopetrosia exigua used to be a congeneric of X. testudinaria. During my examinations of self-collected and holotype specimens I discovered that the species named N. exigua bears a wrong name. For this reason, a taxonomical revision is suggested and, more importantly, according to my findings and the principle of priority in the ICZN (International Code of Zoological Nomenclature) I use the species name ‘chaliniformis’ instead of the species name ‘exigua’. Furthermore, the use of selected nucDNA marker, the Lysidyl Aminoacyl Transfer RNA Synthetase (LTRS) intron, also contributes to the detection of phylogeographical breaks in N. chaliniformis of the IAA (Chapter 5). In a nutshell, the success of unravelling sponge taxonomies, phylogenies, and phylogeographic relationships always depends on the suitability of the utilised molecular markers and the significance of environmental influences on the sponges. Haplosclerid sponges possess limited morphological features. These hurdles create several problems, e.g. difficulties with taxa delimitation and unresolved phylogeography relationships. Even though the application of molecular techniques generated some limitations and obstacles in these studies, it has already contributed significantly to a better understanding of the phylogenies, phylogeographic relationships and taxonomical problems of X. testudinaria and N.chaliniformis, the species I selected for my research.

    The life and death of heterogeneity in magmas

    The life and death of heterogeneity in magmas
    Explosive volcanism is one of the most catastrophic material failure phenomena. During magma ascent, fragmentation produces particulate magma, which, if deposited above the glass transition of the interstitial melt, will sinter viscously. In-conduit tuffisites, conduit wall breccias and ash deposited from exceptionally hot pyroclastic flows are scenarios in which sintering by viscous flow is possible. Therefore, understanding the kinetics of sintering and the characteristic timescales over which magma densifies are critical to understanding the degassing timeframe in conduits and deposits. Viscous sintering is accompanied by a recovery of material strength towards that of a pore-free, dense magma. Understanding damage mechanisms and seismic behaviour prior to failure of sintered volcanic products are also crucial for the application of micromechanical models and material failure forecasting laws. Powdered standard glass and industrial glass beads have been used to explore sintering mechanisms at ambient pressure conditions and temporal evolution of connected and isolated pore-structure. I observe that sintering under low axial stress is essentially particle size, surface tension and melt viscosity controlled. I found that the timescales over which the bulk density approaches that of a pore-free melt at a given temperature is dependent on the particle-contact surface area, which can be estimated from the particle shape, the packing type and the initial total porosity. Granulometric constraint on the starting material indicates that the fraction of finer particles controls the rate of sintering as they cluster in pore spaces between larger particles and have a higher driving force for sintering due to their higher surface energy to volume ratio. Consequently, the resultant sample suite has a range of microstructures because the viscous sintering process promotes a fining of pores and a coarsening of particles. In a volcano, newly formed sintering material will then further contribute to magma-plugging of the conduit and its mechanical properties will affect magma rupture and its associated precursory signals. This consideration permitted me to explore the effect of sintering on the stress required for dynamic macroscopic failure of synthesised samples and assess the ability of precursory microseismic signals to be used as a failure forecast proxy at conditions relevant to shallow volcanic conduits. To this end, the samples were subjected to mechanical tests under a constant rate of deformation and at a temperature in the region of the material glass transition. A dual acoustic emission rig was employed to track the occurrence of brittle fracturing. The monitored acoustic dataset was then exploited to systematically assess the accuracy of the failure forecasting method as a function of heterogeneity (cast as porosity) since it acts as nucleating site for fracture propagation. The pore-emanating crack model describes well the peak stress at failure in the elastic regime for these materials. I show that the failure forecast method predicts failure within 0-15% error at porosities >0.2. However, when porosities are <0.2, the forecast error associated with predicting the failure time increases to >100%. I interpret these results as a function of the low efficiency with which strain energy can be released in the scenario where there are few or no heterogeneities from which cracks can propagate. These observations shed light on questions surrounding the variable efficacy of the failure forecast method applied to active volcanoes. In particular, they provide a systematic demonstration of the fact that a good understanding of material properties is required. Thus I wish to emphasise the need for a better coupling of empirical failure forecasting models with mechanical parameters, such as failure criteria for heterogeneous materials, and point to the implications of this for a broad range of material-based disciplines.

    Magnetic properties of iron-nickel metals and alloys under high pressure with relevance to planetary cores

    Magnetic properties of iron-nickel metals and alloys under high pressure with relevance to planetary cores
    This dissertation explores the effects of pressure on the magnetic remanence of iron-nickel and iron-silicon alloys relevant to the solid inner cores of the terrestrial planets and Earth’s moon. The Earth’s inner core likely comprises mostly pure iron in a hexagonal close packed (hcp) structure. Experiments on pure iron powder and foil were carried out up to 21 GPa at room temperature. The most important conclusion from this work is that either hcp-iron is ferromagnetic or that a poorly understood, intermediate hcp phase of iron is ferromagnetic. It was also determined that the results must be corrected for magnetic shape anisotropy, which is related either to the original sample material (foil) or how the bulk sample volume changes shape due to increasing oblateness of the chamber during pressurization. Fe-Ni alloys in the face centered cubic (fcc) phase with compositions around Fe64Ni36, called Invar, exhibit near-null thermal expansion, making them useful for technological applications. Models explaining the Invar effect evoke magnetovolume effect that compensate for thermal expansion. Previous work suggested that the Curie temperature of Fe64Ni36 decreases 35 K per GPa, which predicts that around 5 GPa, Fe64Ni36 will turn paramagnetic. Our experiments on Fe64Ni36 found a marked decrease in magnetization between 5-7 GPa, consistent with former studies, but that it remains ferromagnetic until 16 GPa. The magnetic remanence of low Ni Invar alloys increases faster with pressure than for other body-centered-cubic compositions due to the higher magnetostriction of the low Ni Invar metals. Experimental results on body centered cubic (bcc) Fe-Ni alloys match well with those for pure iron-- again leading to the conclusion that either an intermediate hcp phase, or that the hcp phase itself, is ferromagnetic. The ubiquitous enhancement in magnetization under pressure, or during pressure release, of the Fe-Ni and Fe-Si alloys is associated with strain-induced martensitic effects. Finally, a defocused laser heating technique was developed to measure the Curie temperature in diamond or moissanite anvil cells. Preliminary results on titanomagnetite (Fe2.4Ti0.6O4) are broadly consistent with previous work.

    Paleogeographic reconstructions in the western mediterranean and implications for permian pangea configurations

    Paleogeographic reconstructions in the western mediterranean and implications for permian pangea configurations
    Bereits zu Beginn des 20. Jahrhunderts entwickelte Alfred Wegener seine allgemein bekannte Rekonstruktion der Kontinente, indem er die Fragmente kontinentaler Kruste durch Schließung der großen Ozeane entlang ihrer heutigen Küstenlinien zusammenfügte, so dass alle Kontinente zu einer Landmasse vereint waren. Den resultierenden Superkontinent nannte er "Pangäa" (Wegener, 1920). In dieser Rekonstruktion liegen sich Nord- und Südamerika gegenüber und Nordwestafrika grenzt an die Südostküste Nordamerikas. Lange Zeit nahm man an, dass die Paläogeographie dieses Superkontinents sich im Laufe seiner Existenz nicht bedeutend verändert hat, sondern dass die Kontinente sich im Jura im Wesentlichen aus der gleichen Konfiguration heraus voneinander gelöst haben, zu der sie sich ursprünglich im Paläozoikum zusammengefunden hatten. In der Tat gibt es vielfältige geologische, paläontologische und geophysikalische Hinweise dafür, dass Wegeners Pangäa-Konfiguration von der späten Trias bis in den frühen Jura Bestand hatte. In den späten Fünfzigerjahren des vergangenen Jahrhunderts entwickelte sich mit der Paläomagnetik eine Methode, die es ermöglicht, die Bewegungen der Kontinente über das Alter des ältesten bekannten Ozeanbodens hinaus zu rekonstruieren. Aufgrund des Dipolcharakters des Erdmagnetfeldes gilt das jedoch nur für die Rekonstruktion von paläogeographischen Breitenlagen, die Lage bezüglich der Längengrade kann mit Hilfe des Erdmagnetfeldes nicht eindeutig bestimmt werden. Eine nicht unerhebliche Anzahl paläomagnetischer Studien hat gezeigt, dass Wegeners Pangäarekonstruktion, auch Pangäa A genannt, mit globalen paläomagnetischen Daten in prä-triassischer Zeit nicht kompatibel ist. Zwingt man die Nord- und Südkontinente Pangäas, Laurasia und Gondwana für diese Zeit in die Pangäa A Konfiguration, so ergibt die auf paläomagnetischen Daten basierende paläogeographische Rekonstruktion ein signifikantes Überlappen kontinentaler Krustenanteile (siehe z. B. Van der Voo (1993); Muttoni et al. (1996, 2003) und darin zitierte Werke). Ein solches Überlappen lässt sich jedoch mit grundlegenden geologischen Prinzipien nicht vereinen. Im Lauf der Jahrzehnte wurden vielfältige alternative prä-triassische paläogeographische Pangäarekonstruktionen erstellt, die im Einklang mit den paläomagnetischen Daten sind. Der Hauptunterschied im Vergleich dieser Rekonstruktionen zur klassischen Pangäa A Konfiguration liegt in der Lage der Südkontinente relativ zu den Nordkontinenten. Um den kontinentalen Überlapp zu vermeiden, werden die Südkontinente unter Beibehaltung ihrer Breitenlage um ca. 30 Längengrade relativ zu den Nordkontinenten weiter im Osten platziert, so dass Nordwestafrika gegenüber Europa zu liegen kommt (Pangäa B, Irving (1977)). Da - wie erwähnt - der Dipolcharakter des Erdmagnetfeldes keine Aussagen über die Position der Kontinente bezüglich der Längengrade zulässt, ist dies mit den paläomagnetischen Daten vereinbar. Die alternativen Konfigurationen müssen jedoch alle vor dem Auseinanderbrechen Pangäas im Jura wieder in die für diesen Zeitraum allgemein akzeptierte Wegener-Konfiguration zurückgeführt werden. Dies geschieht - wiederum im Einklang mit den paläomagnetischen Daten - unter Beibehaltung der Breitenlage der Kontinente entlang einer postulierten kontinentalen dextralen Scherzone. Der Versatz von 2000 bis 3000 km fand laut Muttoni et al. (2003) in einem Zeitraum von ca. 20 Ma im frühen Perm statt. Dadurch ergibt sich eine entsprechend hohe Versatzrate von 10 bis 15 cm/a. Diese Arbeit befasst sich im Rahmen mehrerer paläomagnetischer Studien mit der Suche nach dieser großen Scherzone, deren Existenz seit Jahrzehnten umstritten ist. Der große Versatz wurde vermutlich von mehreren Störungssegmenten aufgenommen, die eine mehrere hundert Kilometer breite diffuse und segmentierte Scherzone bildeten. Paläogeographische Rekonstruktionen legen nahe, dass die Scherzone unter Anderem den Bereich des heutigen Mittelmeerraumes umfasst hat (Arthaud and Matte, 1977). Die Tizi-N'-Test-Verwerfung und ihre westliche Fortsetzung, die Süd-Atlas-Störung, sowie Verwerfungen entlang der nördlichen Pyrenäen und innerhalb des Armorikanischen Massivs (Bretagne) bilden demnach die Hauptblattverschiebungssysteme, die die Scherzone begrenzen. Krustenblöcke, die in entsprechend großen Störungssystemen liegen, können um vertikale Achsen rotieren (Nelson and Jones (1987) und darin zitierte Werke). Diese Rotationen können mit Hilfe der Paläomagnetik quantifiziert werden. Kapitel 1 leitet in die vorstehend beschriebene Problematik ausführlich ein und beleuchtet insbesondere die einzelnen Abschnitte dieser Arbeit. Somit wird deutlich, wie die Ergebnisse der Studien, aus denen sich die vorliegende Arbeit zusammensetzt, aufeinander aufbauen und einen konsistenten Lösungsansatz für die eingangs beschriebene Diskrepanz zwischen den Polwanderkurven Laurasias und Gondwanas entwickeln. Kapitel 2 beschreibt eine paläomagnetische Studie, die im Toulon-Cuers Becken, Südfrankreich durchgeführt wurde. Das Toulon-Cuers Becken entstand während einer Phase der Extension im südlichen variszischen Gürtel Europas, und ist sukzessive mit Sedimenten verfüllt worden. Außer mächtigen permo-triassischen Sedimentpaketen finden sich hier auch Laven und Pyroklastika als Produkte eines extensionsgetriggerten Vulkanismus, die ebenfalls Gegenstand der hier durchgeführten Studie sind. Die Ergebnisse der Untersuchungen können sehr gut mit bereits vorhandenen Literaturdaten in Einklang gebracht werden und zeigen, dass es zur fraglichen Zeit durchaus Bewegungen zwischen klar definierten Krustenblöcken gab, die Zeugen einer generellen Mobilität der Kruste in diesem Bereich sind. Es handelt sich hierbei um Blockrotationen um vertikale Achsen, so wie sie im Spannungsfeld einer kontinentalen Transformstörung zu erwarten sind. Dabei werden Rotationen im und gegen den Uhrzeigersinn dokumentiert, woraus eine komplexe Geometrie und Anordnung der Krustenblöcke abgeleitet werden kann. Hieraus wird ein tektonisches Modell entwickelt, welches mit gängigen Modellen (siehe McKenzie and Jackson (1983) in Nelson and Jones (1987)) in Einklang gebracht wird. Die triassischen paläomagnetischen Daten aus dem Gebiet belegen im Gegensatz dazu keine Rotationen und legen daher den Schluss nahe, dass die Krustenmobilität in dem Bereich zu Beginn des Mesozoikums zum Erliegen gekommen war. Somit belegt diese Studie deutlich, dass es im von Muttoni et al. (2003) postulierten zeitlichen Rahmen Hinweise für eine generelle Mobilität innerhalb Pangäas gibt. Unter Berücksichtigung dieser Ergebnisse wurde die folgende Studie an magmatischen Ganggesteinen ("Dykes") in Sardinien (Italien) durchgeführt, um die laterale räumliche Dimension der Scherzone besser abschätzen zu können. Kapitel 3 stellt die Ergebnisse dieser Studie vor. Die Dykes treten schwarmförmig auf und sind in einem Zeitraum zwischen 298 ± 5Ma und 270 ± 10Ma in den Korsika-Sardinien-Batholith intrudiert (Atzori and Traversa, 1986; Vaccaro et al., 1991; Atzori et al., 2000). Zusätzlich zu den Rotationen, die auch hier mittels paläomagnetischer Daten nachgewiesen werden konnten, gibt die Orientierung der einzelnen Dykeschwärme Aufschluss über das tektonische Spannungsfeld, das während der Platznahme der Dykes vorherrschte. Diese kombinierten Ergebnisse bestätigen und ergänzen die Ergebnisse der vorhergehenden Studie in Südfrankreich. Ergänzend zu den Untersuchungen an den Ganggesteinen Sardiniens werden Daten von permischen Sedimenten und Vulkaniten präsentiert, die in verschiedenen Regionen Sardiniens beprobt wurden (Kapitel 4). Die paläomagnetischen Daten belegen, dass Sardinien in mindestens zwei Krustensegmente zerlegt war, welche relativ zueinander und auch relativ zur europäischen Polwanderkurve rotiert sind. Auch hier wiederholt sich das Muster von Rotationen im und gegen den Uhrzeigersinn. In dieser Studie werden die Ergebnisse aus den vorangehenden Kapiteln sowie aus der weiterführenden Literatur zusammengefasst, so dass ein zeitlich und räumlich verfeinertes Bild der Krustenblöcke im westlichen Mittelmeerraum zur Zeit des frühen Perm entsteht. Durch die verbesserte Definition der Geometrie der einzelnen Blöcke kann das in Kapitel 2 beschriebene tektonische Modell bestätigt werden. Kapitel 5 befasst sich abschließend mit dem zeitlichen Rahmen der Aktivität entlang der fraglichen Scherzone. Ausgehend von der Annahme, dass sich die Kontinente im Jura bereits in einer Pangäa A Konfiguration befunden haben, sollten die paläomagnetischen Daten von jurassischen Gesteinen keine Hinweise auf Scherbewegungen geben. Hierzu wird eine Studie an jurassischen Sedimenten Sardiniens vorgestellt. Die paläomagnetischen Daten der untersuchten Krustensegmente belegen, dass es in post-jurassischer Zeit in Sardinien keine Blockrotationen der einzelnen Segmente relativ zueinander gab und Sardinien somit ab jener Zeit als tektonisch einheitlicher Block behandelt werden muss. Des Weiteren zeigen die paläomagnetischen Pole, die aus den paläomagnetischen Richtungen für eine Referenzlokalität berechnet wurden, keine signifikante Abweichung von der Polwanderkurve des europäischen Kontinents nach Besse and Courtillot (2002). Diese Kohärenz der paläomagnetischen Daten bestätigt die weithin akzeptierte Beobachtung, dass sich Pangäa zur Zeit des Jura bereits in der Wegener Konfiguration (Pangäa A) befunden hat und untermauert die Aussagekraft paläomagnetischer Studien in diesem Zusammenhang. Zugleich kann anhand dieser Daten ausgeschlossen werden, dass die alpidische Orogenese die Ursache für bedeutende Krustenblockrotationen in dieser Region gebildet hat. Die Ergebnisse der oben genannten Studien werden in dieser Arbeit zusammengeführt. Im Verbund mit Daten aus der Literatur untermauern sie, dass es zwischen dem frühen Perm und der frühen Trias entlang eines ausgedehnten Gürtels, der mindestens vom französischen Zentralmassiv über Südfrankreich bis nach Korsika- Sardinien reichte, bedeutende Krustenbewegungen in Form von Blockrotationen innerhalb Pangäas gab. Die vorliegende Synthese schafft somit ein konsistentes Bild der generellen Krustenmobilität zwischen den nördlichen Teilen Pangäas (Laurasia) und den Südkontinenten (Gondwana). Der durch die präsentierten Studien abgesteckte zeitliche Rahmen korreliert mit den Abschätzungen von Muttoni et al. (2003) zur Transformation zwischen verschiedenen Pangäakonfigurationen. Diese Arbeit bestätigt außerdem, dass das mittlere Perm eine Zeit großräumiger Reorganisation der kontinentalen Platten war, die von anhaltender magmatischer Aktivität begleitet war (Deroin and Bonin, 2003; Isozaki, 2009). Anhand der hier vorgestellten neuen Daten in Kombination mit bereits bekannten paläomagnetischen Daten aus der Region ergibt sich ein klares Muster von Rotationen im und gegen den Uhrzeigersinn von einzelnen störungsbegrenzten Krustenblöcken. Diese Arbeit belegt, dass die Paläomagnetik ein hervorragendes Instrument zur Quantifizierung jener Krustenblockrotationen ist, die oftmals die einzigen verbleibenden Indizien für ehemals großräumige Scherzonen bieten, nachdem die Störungen selbst aufgrund vielfältiger Prozesse nicht mehr aufgeschlossen sind (Umhoefer, 2000). Die tektonischen Modelle von McKenzie and Jackson (1983) in der Interpretation nach Nelson and Jones (1987) werden als Erklärungsgrundlage für die beobachteten Rotationen herangezogen und erweitert.
    Logo

    © 2024 Podcastworld. All rights reserved

    Stay up to date

    For any inquiries, please email us at hello@podcastworld.io