Logo

    The cost of nuclear

    enAugust 15, 2024
    What regions are primarily building new nuclear power plants?
    How does the cost of nuclear energy impact its deployment?
    What factors contribute to high nuclear costs in the US?
    Why are countries reconsidering nuclear power phases out?
    What are modular nuclear reactors and their advantages?

    Podcast Summary

    • Global Nuclear DeploymentDespite challenges in the US, nuclear power is experiencing significant growth globally, primarily in regions with high electricity demand, and over 30 countries are exploring their first nuclear power plants, mostly in Asia, Africa, Central America, and South America.

      While nuclear energy faces challenges in the United States, globally, there's significant growth in nuclear deployment. Nuclear power is primarily being built in regions with high electricity demand, such as East Asia, South Asia, and Central Asia. Additionally, there are over 30 countries exploring their first nuclear power plants, mostly in Asia, Sub-Saharan Africa, Central America, and South America. Notably, even countries that had planned to phase out nuclear power are reconsidering due to recent energy crises and geopolitical events. For instance, the UAE's Barakah Nuclear Power Plant, which is the largest single power project in the world, generates 20% of the country's electricity. The cost of nuclear energy is a crucial factor in its deployment, and understanding the global context can provide insights into the challenges and opportunities for the future of nuclear fission.

    • Nuclear power costCost of nuclear power varies greatly, from $2,200 to $8,000 per kilowatt, with a moonshot goal of under $2,000 in US for competitiveness. Building multiple reactors with standardized design can keep costs low.

      The cost of nuclear power varies greatly depending on the location and the specific project. The cost can range from as low as $2,200 per kilowatt in South Korea to as high as $8,000 per kilowatt in the US. A moonshot goal for nuclear cost in the US is under $2,000 per kilowatt, which would translate to around $60 per megawatt hour, making it competitive with other clean base load power sources. However, historically, the cost of nuclear power has been even cheaper than this, with reactors built in the 1960s costing less than today's projects. The key to keeping nuclear costs low is building a large number of reactors using a standardized design, which allows for economies of scale and learning as the industry progresses.

    • Nuclear infrastructure costsHalf of the nuclear power plant costs come from infrastructure outside the reactor, with 35% going towards ancillary costs like engineering, procurement, and construction management.

      The cost of nuclear energy varies greatly depending on the country and the specific design of the reactors. France, for instance, started with high costs but learned and improved with each new design. China, with the most nuclear under construction, is estimated to be building at around $2,500 per kilowatt, but the actual cost breakdown involves more than just the nuclear component itself. About half of the costs come from the power plant infrastructure outside the reactor, such as cooling systems and groundwork, which are heavily regulated and unique to each project. The actual nuclear component is only 12% of the total cost. A significant portion, 35%, goes towards engineering, procurement, construction management, and owners costs. These ancillary costs add up due to the unique nature of building nuclear reactors, which are more akin to large infrastructure projects than mass-produced goods.

    • Nuclear soft costsAddressing soft costs in nuclear energy by having fewer companies build more reactors to achieve economies of scale is a potential solution, but the history of the industry and the emergence of new technologies may impact the number of successful companies.

      While the cost of building a nuclear reactor itself may not be the primary issue, the costs associated with engineering and construction outside of the reactor, often referred to as "soft costs," are a significant concern. This issue could potentially be addressed by having a smaller number of companies building a larger number of reactors to drive down costs through economies of scale. However, the history of nuclear power and the desire for market competition raises questions about how many companies can realistically succeed. The potential for new technologies, such as those that are modular and rely on passive safety, offers promise for cost savings. Research suggests that smaller energy technologies generally have faster learning rates, which could also apply to nuclear. Ultimately, the key to making nuclear energy cost-effective is to build and demonstrate these new technologies first to prove their viability.

    • Nuclear Energy RegulationRegulation plays a role in nuclear energy costs, but lack of demand and past construction project mismanagement are the main reasons for high costs in the US nuclear industry.

      While Antenna's expertise and creative abilities help organizations lead in climate narratives by focusing on key trends and moments, the cost and regulation of nuclear energy in the US is a complex issue. Traditional nuclear reactors rely on heavily over-engineered systems for safety, like robust pumps for cooling, while advanced reactors use convective cooling and engineering to move heat, reducing the need for such pumps. Regulation is a factor in nuclear costs, but lack of demand and volume are the main reasons for high costs in the US. The industry's past mistakes in managing construction projects and supply chains also contribute. To bring down costs, the US needs demand policies and regulatory changes, especially for modular nuclear plants.

    • Nuclear energy industry challengesThe nuclear energy industry in the US faces challenges such as rising costs and regulatory hurdles, but is optimistic about the future with several projects in development and a growing market

      The nuclear energy industry in the US is experiencing a renewed interest due to increasing electricity demand, decarbonization policies, and advancements in nuclear technology. However, the cancellation of the New Scale project serves as a reminder of the challenges in bringing new nuclear projects online, including rising costs and regulatory hurdles. The industry is diverse, with various designs and sizes, catering to different markets. Small reactors, including micro reactors, are gaining attention due to their potential for faster commercial demonstrations. The resumption of nuclear in the US hinges on overcoming the challenges of uncertainty and cost, especially for first-of-a-kind projects. Despite these challenges, the industry is optimistic about the future, with several projects in the pipeline and a growing market for nuclear energy.

    • Nuclear energy business modelsCompanies in the nuclear energy sector are adapting their business models to secure orders and manage financial risks through fixed pricing and build-operate models, driven by changing energy policies and the need for energy security.

      Companies in the nuclear energy sector are adapting their business models to better meet market needs and manage financial risks. This includes setting fixed prices for large projects and exploring build-operate models for smaller projects. The shift in approach is driven by the need to secure orders and address the financial strain of large-scale projects. Additionally, the optimism towards nuclear energy is growing due to changing energy policies and the need for energy security following global events like the Russian invasion of Ukraine. Despite challenges, the role of nuclear energy in displacing fossil fuels and contributing to climate change mitigation efforts remains significant.

    Recent Episodes from Catalyst with Shayle Kann

    The better mousetrap fallacy

    The better mousetrap fallacy
    Deploy or innovate? Scale up an existing technology or develop a breakthrough? Build, build, build, or invent a better mousetrap? The question isn’t which strategy to follow; it’s which strategy to use in which sector. Virtually no one thinks that solar needs brand new tech breakthroughs to scale. Crystalline silicone took the lion’s share of the market years ago from cadmium telluride, amorphous silicon, CIGS and other early solar technologies. But in carbon removal, batteries, nuclear, and other industries — should we develop new technologies, or scale up a promising few? In this episode, Shayle talks to his colleague Andy Lubershane about the better mousetrap fallacy in climate tech. Andy is the head of research and a partner at Energy Impact Partners. He argues that, in certain industries, investing in building a better mousetrap is a bad use of capital, and that too many options causes analysis paralysis for would-be customers.  Shayle and Andy cover topics like: How scaling up technologies – as Chinese manufacturers have scaled up solar and batteries – drives down cost Why new technologies that aren’t five or 10 times better than an incumbent may fail to beat the cost curve Whether batteries need breakthroughs, and how Andy thinks about lithium-iron-phosphate, sodium-ion, thermal, and iron-air Why Andy thinks that the Nuclear Regulatory Commissions should license more new projects than new technologies The challenge of having more direct air capture technologies than buyers Recommended resources Catalyst: The cost of nuclear Latitude Media: Is large-scale nuclear poised for a comeback? Catalyst: Seeking the holy grail of batteries Catalyst: Growing the carbon dioxide removal market Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Anza, a revolutionary platform enabling solar and energy storage equipment buyers and developers to save time, increase profits, and reduce risk. Instantly see pricing, product, and counterparty data and comparison tools. Learn more at go.anzarenewables.com/latitude. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enSeptember 12, 2024

    The rise of climate adaptation tech

    The rise of climate adaptation tech
    Cutting emissions is essential to avoiding the worst of climate change, but we also have to deal with the impacts of climate change happening now. Fortunately, there’s a growing list of technologies that could help us adapt — and potentially turn a profit for investors, too. Will these emerging adaptation and resilience (A&R) technologies take off as an investment category? In this episode, Shayle talks to Katie MacDonald, co-founder and managing partner at Tailwind. They talk about the areas of application – like wildfire prevention, air filtration, health monitoring, and more – that are attracting the attention of governments, corporations, and investors. But the space is young and still needs metrics and definitions, which is why Tailwind developed a taxonomy of A&R themes and sectors and plans to release an “innovation playbook” with market insights in the fall.  Shayle and Katie cover topics like: Defining the scope of A&R  Attracting resilience-curious investors to the space The co-benefits with mitigation How to measure the success of A&R Growing demand signals from governments, such as California’s climate risk disclosure requirements Recommended resources Tailwind: Taxonomy for Climate Adaptation and Resilience Activities S&P Global: Risky Business: Companies' Progress On Adapting To Climate Change Bloomberg Law: States Forge Ahead on Climate Disclosures as SEC’s Plan Drags on Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enSeptember 05, 2024

    Why are we still flaring gas?

    Why are we still flaring gas?
    Oil producers waste a lot of natural gas. Last year they flared 150 billion cubic meters of associated gas into the atmosphere, equivalent to about half the global carbon emissions of aviation over a 30-year period. So why are oil producers burning a valuable commodity like gas? In this episode, Shayle talks to Tomás de Oliveira Bredariol, an energy and environmental policy analyst focused on methane at the IEA. So far, multiple major global initiatives haven’t made a dent in flare volumes, which have remained largely flat since 2010. Shayle and Tomás talk about the reasons why and the potential solutions, covering topics like: The nine countries responsible for about three quarters of flare volumes Why we don’t just build more pipelines Why oil wells may choose expensive diesel instead of powering their equipment with associated gas Converting gas into more valuable forms, like compressed natural gas, liquid natural gas, or methanol The potential for regulation and financial incentives to push producers to cut flare volumes Recommended resources International Energy Agency: Curtailing Methane Emissions from Fossil Fuel Operations National Renewable Energy Laboratory: Stranded Natural Gas Roadmap World Bank: Global Gas Flaring Data Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enAugust 29, 2024

    Hunting for geologic hydrogen

    Hunting for geologic hydrogen
    Hydrogen has two big problems: cost and supply. As a low-carbon feedstock, it could decarbonize planes, industry, and power plants. It could even replace the oil in plastics and chemicals. But the leading contenders for low-carbon hydrogen production — like using zero-carbon power for electrolysis and methane pyrolysis — just haven’t cut it yet. So far, the price points are too high and the scale of production is too low to spur a hydrogen revolution. But instead of synthesizing hydrogen, what if we pumped naturally-occurring hydrogen reservoirs out of the ground, just like we drill for oil and natural gas? In this episode, Shayle talks about geologic hydrogen with Pete Johnson, CEO of Koloma. Early estimates suggest vast quantities of the gas could be tapped for far cheaper than other production methods. That is, if some major challenges are solved, like finding economically viable reserves, managing leakage, and building infrastructure. In these early days, those are all big ifs.  A handful of startups are exploring geologic hydrogen, and Koloma, which has raised $300 million, is the most prominent in the space. (Shayle invests in Koloma and serves on its board. Prelude Ventures, which led Latitude Media’s fundraising round, also invests in Koloma.) Shayle and Pete cover topics like: The key factors that lead to reservoirs of geologic hydrogen, like water, iron-rich rock, traps, and seals Why geologic hydrogen could become the cheapest form of hydrogen, if found in large, economically viable reservoirs The greenhouse gas impact of hydrogen, which interferes with the breakdown of methane in the atmosphere Why Pete thinks that economically viable wells will attract new infrastructure, like clean ammonia plants, the way Houston attracted oil infrastructure Stimulating geologic hydrogen production by injecting water into rock What sort of watershed moment would prove the viability of geologic hydrogen Recommended resources Latitude Media: Should we be paying more attention to geologic hydrogen? US Geological Survey: The Potential for Geologic Hydrogen for Next Generation Energy Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enAugust 23, 2024

    The cost of nuclear

    The cost of nuclear
    Editor’s note: There’s new interest in nuclear power from electric utilities, the White House, and the public. While NuScale’s deal to build a small modular reactor failed last year, TerraPower is currently building the U.S.’s first advanced non-light water reactor in Wyoming. So we’re revisiting an episode from last November with The Good Energy Collective’s Dr. Jessica Lovering unpacking one of nuclear’s biggest challenges: cost. Nuclear construction costs in the U.S. are some of the highest in the world. Recent estimates put the cost of building conventional nuclear reactors at more than $6,000 per kilowatt, as measured by overnight capital cost. But high costs are a problem for new small modular reactors (SMRs) too, killing what was going to be the country’s first SMR before it got built. Meanwhile, South Korea has some of the lowest costs in the world. Estimated overnight capital costs for reactors in South Korea are closer to $2,200 per kilowatt.And then there are countries like China, France, and the United Arab Emirates that fall between those extremes. So why the wide range in costs?  In this episode, Shayle talks to Dr. Jessica Lovering, co-founder and executive director at the Good Energy Collective, a non-profit that researches and promotes policies that support nuclear power. A former director of energy at the Breakthrough Institute, she also authored a comprehensive study of nuclear construction costs in 2016.  Shayle and Jessica talk about things like: What goes into the cost of construction and South Korea’s secret sauce for low-cost nuclear reactors Why Jessica thinks we should manufacture and regulate reactors like large aircraft Driving down costs with modularity, small reactors, passive safety features, and more construction  Why changing regulations might be necessary, but not a silver bullet  Why the pro- and anti-nuclear camps talk past each other — and why Jessica says she’s somewhere in between  Recommended Resources: Latitude Media: Is large-scale nuclear poised for a comeback? Energy Policy: Historical construction costs of global nuclear power reactors National Academy of Engineering: Chasing Cheap Nuclear: Economic Trade-Offs for Small Modular Reactors Joule: Evaluating the Role of Unit Size in Learning-by-Doing of Energy Technologies Science: Granular technologies to accelerate decarbonization Canary: Future of small reactors at stake as NuScale deal flops Catalyst is brought to you by Anza, a revolutionary platform enabling solar and energy storage equipment buyers and developers to save time, increase profits, and reduce risk. Instantly see pricing, product, and counterparty data and comparison tools. Learn more at go.anzarenewables.com/latitude. Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enAugust 15, 2024

    Frontier Forum: Is America’s green bank ready?

    Frontier Forum: Is America’s green bank ready?
    America’s green bank – officially known as the Greenhouse Gas Reduction Fund – is ramping up. Thanks to the Inflation Reduction Act, the federal government is sending $27 billion to a network of non-profit organizations, state green banks, and local private lenders to fund distributed energy projects.  The pressure is on to invest those dollars quickly and efficiently. The GGRF won’t be considered successful if it only deploys that $27 billion – it will be successful if it catalyzes 5x more in capital deployment.  That means building a transparent market with uniform lending standards for CDFIs and local banks – lenders that may be touching solar, storage or other distributed energy deals for the very first time.  The money is headed out the door. Are lenders ready to deploy it?  This week, we're featuring a conversation with Amanda Li of Banyan Infrastructure and Billy Briscoe of the Clean Energy Fund of Texas. It was recorded live as part of Latitude Media's Frontier Forum series.  We'll unpack the details, the urgency, any potential gaps, and the stakes for building a market. This episode was produced in collaboration with Banyan Infrastructure. Read more of Banyan’s insights into the GGRF here.
    Catalyst with Shayle Kann
    enAugust 13, 2024

    Understanding the transmission bottleneck

    Understanding the transmission bottleneck
    Editor’s note: There’s momentum behind permitting reform in the U.S. Congress right now. It could mean unstopping a serious bottleneck in climate tech — transmission. So we’re revisiting an episode from last May with Grid Strategies’ Rob Gramlich to understand how we got here, the impacts on climate tech, and the potential fixes.  The U.S. power grid is clogged, and it’s holding back the energy transition.  Solar and wind farms are waiting four or more years to connect to the grid. Rising congestion costs are driving up retail electricity prices while hurting generator revenues. And the process of approving projects for interconnection is so complicated and expensive that it’s forcing developers to abandon the projects they were planning to build.  We need much more transmission capacity and a better process for connecting projects. And we need it now more than ever. Demand for power will skyrocket as we connect EVs, heat pumps and other new loads to the grid. But Rob Gramlich, our guest today, comes with good news: We did it before. We can do it again.  Rob is the founder and president of Grid Strategies. In this episode, Shayle and Rob talk through the three major challenges of transmission – congestion, interconnection, and buildout. And Rob explains how we’ve built out transmission in the past with efforts like ERCOT’s Competitive Renewable Energy Zones (CREZ) and MISO’s Multi-Value Projects (MVPs). They also cover topics like: The history of transmission buildout in the U.S. The three P’s of transmission challenges: planning, permitting, and paying How congestion costs might shoot up over the next few years as grid capacity lags behind generation, causing new generation to slow and retail electricity prices to go up Reforming the slow, complex, and expensive approval process for interconnection at the Federal Energy Regulatory Commission How the backed up interconnection queue leads developers to submit speculative projects, hoping for one project, but filing six to see what they get Where local opposition fits into transmission’s larger problems Recommended Resources: Grid Strategies: Transmission Congestion Costs in the U.S. RTOs Grid Strategies: Fewer New Miles: The U.S. Transmission Grid in the 2010s E&E News: Senators line up to support permitting package Recommended resources Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enAugust 08, 2024

    Pathways to decarbonizing steel

    Pathways to decarbonizing steel
    Little-known fact: The primary product of steel mills is CO2. A conventional blast furnace produces almost two tons of carbon dioxide for every ton of steel. And with almost two billion tons of steel produced annually — roughly 500 pounds for every human, every year — that’s a lot of carbon: about 8% of global energy system emissions. And yet, steel is vital for vast parts of the economy, including the energy transition itself.  So why does steel production emit so much CO2? And what are the pathways to fixing it? In this episode, Shayle talks to Rebecca Dell, senior director of the industry program at the Climateworks Foundation. They cover topics like: How steelmaking generates emissions from both heat and the production process itself Why coal is so useful for blast furnaces, and why natural gas can’t fully replace it Why recycling cuts emissions but hits a ceiling Direct reduced iron, which uses methane or hydrogen and requires high-quality ore Less-developed but promising alternatives: molten oxide electrolysis and aqueous electrolysis, which can use low-quality ore The limits of carbon capture and storage and material substitution The major players building DRI facilities, like SSAB, ThyssenKrupp, and Salzgitter Recommended resources Canary Media: US pledges up to $1B for two pioneering ​‘green steel’ projects Latitude Media: H2's $5B fundraise is a 'test case' for financing green steel Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enAugust 02, 2024

    The EV market’s awkward teenage years

    The EV market’s awkward teenage years
    Automakers got ahead of their skis. EV sales are up globally and in the U.S., but growth has been slower than expected and uneven. After enjoying a wave of growth driven by early adopters, automakers overestimated demand of more cautious consumers and ended up producing more than buyers wanted. Now auto dealers are slashing prices to move cars off the lot. So how did the market get here? And how can EVs appeal to the next wave of consumers? In this episode, Shayle talks to Gene Berdichevsky, co-founder and CEO of anode material manufacturer Sila Nanotechnologies. Shayle and Gene cover topics like: How high-performance cells can lead to lower-cost batteries Why Gene says lithium-iron-phosphate may hit a ceiling in the market The potential of sodium-ion batteries Who can take advantage of production overcapacity The limitations of the Inflation Reduction Act in the face of weak demand  How manufacturing is competing with other major loads, like data centers, for electricity  Solving the challenges of vehicle-to-grid Recommended resources Bloomberg: The Slowdown in US Electric Vehicle Sales Looks More Like a Blip The Wall Street Journal: EVs Are Cheaper Than Ever. Can Car Buyers Be Won Over? Catalyst: What’s really happening in the US EV market? Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.

    Can chip efficiency slow AI's energy demand?

    Can chip efficiency slow AI's energy demand?
    In March, Nvidia announced a new microchip designed for AI that is 25 times more energy efficient than its predecessor. Two months later, Google announced one with a 67% efficiency improvement. Today, the rest of the semiconductor industry is hyper focused on efficiency gains. Will they save us from ballooning data center energy demands? In this episode, Shayle talks to Christian Belady, former Microsoft vice president now focusing on data center advanced development. They unpack concerns about this new surge of demand and whether it’s different from the energy scare two decades ago. Back in 1999, researchers predicted that data centers could end up consuming half of U.S. electricity. But instead, demand remained largely flat at about 4% as cutting-edge hyperscale cloud computing displaced inefficient, on-premises servers. And yet, driven by the AI boom, energy concerns are back. The Electric Power Research Institute predicts that data center loads could consume 9% of U.S. power generation by 2030. Demand is already rising fast, with emissions at both Google and Microsoft up significantly.  Shayle and Christian examine the factors driving those trends and what we can do about it, covering topics like: Whether chip efficiency improvements will lead to energy savings or just more powerful computing The upper limits of Moore’s Law Energy, labor, and other big constraints on AI growth Changing computing architecture to find energy savings Enlisting data centers in integrated, or compulsory, demand response Using AI to improve chip design  Recommended resources Fierce Electronics: Power-hungry AI chips face a reckoning, as chipmakers promise ‘efficiency’ Latitude Media: The data center of the future looks like a massive virtual power plant Latitude Media: Enchanted Rock is selling utilities on flexible data center connection Latitude Media: Energy is now the ‘primary bottleneck’ for AI Catalyst: Under the hood of data center power demand Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.