Logo

    The reshoring of American solar trackers [partner content]

    enJuly 17, 2024
    How did COVID-19 impact solar farm equipment delivery?
    What strategy did NextTracker implement to address supply chain issues?
    What role does AI play in renewable energy optimization?
    What innovation did NextTracker develop for tracker systems?
    How has the IRA policy affected the solar industry?

    Podcast Summary

    • US Solar Industry Supply Chain DisruptionsThe COVID-19 pandemic disrupted global logistics systems, causing delays in essential equipment delivery to solar farms, leading to rising solar costs and reduced US industry growth. NextTracker's response: building more US manufacturing facilities, catalyzing over 20 factories, and manufacturing over 30GW of components domestically, creating jobs.

      The COVID-19 pandemic caused significant disruptions to global logistics systems, leading to delays in the delivery of essential equipment to solar farms and causing solar costs to rise for the first time in a decade. This issue, compounded by policy uncertainty, led to reduced growth forecasts for the US solar industry. In response, NextTracker, a leading solar tracker company, accelerated its strategy to build more US manufacturing facilities to serve local markets and reduce reliance on overseas supply chains. This retooling effort has resulted in the catalyzation of over 20 factories across the US, with over 30 gigawatts of major components being manufactured domestically and shipped today. This not only addresses the supply chain crunch but also leads to a surge in US solar jobs.

    • US manufacturing resurgenceThe Inflation Reduction Act and focus on secure supply chains are driving a manufacturing revival in the US, particularly in the clean energy sector, through a hybrid strategy of local production and leveraging existing infrastructure.

      The Inflation Reduction Act and the push towards making supply chains more secure are leading to a resurgence of manufacturing in the US, specifically in the clean energy sector. This is evident in the revival of old manufacturing facilities, such as the one in Leedsdale, Pennsylvania, which was once a major steel production hub during World War II. The hybrid strategy of manufacturing locally, while also leveraging existing infrastructure and know-how, is making this transformation possible. For instance, NextTracker, a solar tracker technology company, has tripled capacity at their steel facility in this location. This is just one example of the many manufacturing comebacks happening across the industry. Overall, the IRA is not just about reducing inflation, but also about creating jobs and re-industrializing America.

    • IRA's impact on clean energy industry jobsThe Inflation Reduction Act (IRA) has led to over 100 new factory announcements in the clean energy sector, contributing to re-industrialization, job creation, and reducing the carbon footprint through the use of recycled materials.

      The Inflation Reduction Act (IRA) is making a significant impact on the clean energy industry and creating high-quality, enduring jobs in the US. This was evident during a visit to Nexttracker's solar manufacturing facility in Pittsburgh, where the granddaughter of an original Bethlehem Steel worker was now producing solar products. The use of recycled steel in the US has helped reduce the carbon footprint of raw material production in this industry, which is notoriously difficult to decarbonize. The IRA's passing has led to over 100 new factory announcements in the clean energy sector, contributing to a larger trend of re-industrialization and job creation. Looking back a decade from now, the IRA is expected to be seen as a major jobs bill that helped turn the economy around during a time when there were concerns about a recession. The combination of the IRA, the bipartisan infrastructure bill, and the CHIPS Act has created a strong momentum for re-industrialization and getting people back to work, resulting in historic low unemployment rates and record-breaking values on Wall Street.

    • Solar tracker innovationSolar tracker innovation, particularly independent road tracker systems, enhances large-scale solar projects' efficiency and sustainability by enabling mobility, simplifying vegetation management, and streamlining panel cleaning and operations and maintenance.

      The shift towards renewable energy and solar power in particular, has seen significant advancements, especially in tracker design. This transformation comes at a crucial time when the world needs more power than ever before. The IRA policy's onshore focus could not have been more timely. I've been involved in solar since the 1980s, and my colleague Howard Wanger and I have been advocates for trackers throughout. Our company, Next Tracker, has built on this foundation, with Howard's solar simulation software, PV Grid, playing a key role in our decision-making. Thirty years ago, we chose single axis tracking on horizontal trackers as the most effective solution for solar at scale. However, we faced challenges with mechanical impediments from vehicular traffic when using linked row trackers. To address this, Next Tracker developed an independent road tracker system, which not only enables mobility through the tracker field but also simplifies vegetation management, panel cleaning, and operations and maintenance. This innovation is a game-changer for the solar industry, making large-scale solar projects more efficient and sustainable.

    • Solar tracker system improvementsFocusing on reducing grading and rapid construction enabled the integration of advanced sensors and technologies, leading to significant improvements in energy output and solar panel efficiency, as well as adaptability to new solar technologies.

      By focusing on reducing grading and facilitating rapid construction, this company was able to embed a multitude of sensors and technologies into their solar tracker system. These sensors and technologies, including optimized angle control, uninterruptible power supply, and extreme weather control, unlocked significant improvements in energy output and solar panel efficiency. Additionally, the company's architecture was adaptable to advances in solar technology, such as the shift to half-cell and third-cell solar panels, and the increasing commercialization of bifacial panels. Overall, their approach allowed for more energy capture and better control of solar panels in various weather conditions.

    • Machine Learning in Energy SectorMachine learning optimizes solar panel angles for higher energy yields and cost savings in the energy sector by considering complex terrain and varying meteorological conditions on an annualized basis.

      The use of machine learning is crucial in the energy sector for optimizing energy production and integrating renewables into a constrained grid. The technology allows for the optimization of solar panel angles at a large scale, considering complex terrain and varying meteorological conditions on an annualized basis, which is impossible to do manually. This results in higher energy yields and cost savings. The industry's focus is on delivering the lowest cost of energy for owners, which is achieved by increasing control speeds, providing diagnostic capabilities, and integrating machine learning. Since the acquisition of a machine learning company in 2015 or 2016, this technology has significantly advanced and is now essential for maximizing energy production and efficiency.

    • Solar energy optimizationSerialized tracker info and advanced software capabilities like zonal diffuse optimize solar energy systems, allowing for dynamic operation and increased energy output in various weather conditions. AI and renewable optimization integration expected to boost renewable energy penetration in the grid.

      The use of serialized tracker information and advanced software capabilities, such as zonal diffuse, are crucial for optimizing solar energy systems, especially in large projects with rapidly changing weather conditions. This technology allows for dynamic operation of the system, maximizing energy output in various weather conditions. Furthermore, the integration of AI and renewable optimization is expected to play a significant role in increasing renewable energy penetration in the grid and addressing the challenge of delivering power when it's needed most. By utilizing intelligence to control these systems, we can continue to push the boundaries of renewable energy production and adapt to the ever-changing weather patterns.

    • Solar industry growthThe solar industry has grown rapidly, installing 100 gigawatts of solar trackers globally, and continues to expand with the push towards a more electric grid and regional energy sharing. Next Tracker's focus on sustainability and domestic content contributes to this growth.

      The solar industry has grown much faster than expected, with Next Tracker playing a significant role in installing 100 gigawatts of solar trackers on five continents. The industry's future looks promising with the ongoing drive towards an increasingly electric grid and the potential for regional energy sharing between networks. However, one area where progress has been slower is in the development of fusion power. Despite this, the solar industry has exceeded expectations and remains a gift for those involved. Next Tracker, with a focus on environmental stewardship and supply chain transparency, continues to engage in public policy, workforce development, and efforts to bolster domestic content for solar power generation in the U.S. Their latest product, a low carbon solar tracker, showcases their commitment to reducing embedded carbon by 35%.

    Recent Episodes from Catalyst with Shayle Kann

    The better mousetrap fallacy

    The better mousetrap fallacy
    Deploy or innovate? Scale up an existing technology or develop a breakthrough? Build, build, build, or invent a better mousetrap? The question isn’t which strategy to follow; it’s which strategy to use in which sector. Virtually no one thinks that solar needs brand new tech breakthroughs to scale. Crystalline silicone took the lion’s share of the market years ago from cadmium telluride, amorphous silicon, CIGS and other early solar technologies. But in carbon removal, batteries, nuclear, and other industries — should we develop new technologies, or scale up a promising few? In this episode, Shayle talks to his colleague Andy Lubershane about the better mousetrap fallacy in climate tech. Andy is the head of research and a partner at Energy Impact Partners. He argues that, in certain industries, investing in building a better mousetrap is a bad use of capital, and that too many options causes analysis paralysis for would-be customers.  Shayle and Andy cover topics like: How scaling up technologies – as Chinese manufacturers have scaled up solar and batteries – drives down cost Why new technologies that aren’t five or 10 times better than an incumbent may fail to beat the cost curve Whether batteries need breakthroughs, and how Andy thinks about lithium-iron-phosphate, sodium-ion, thermal, and iron-air Why Andy thinks that the Nuclear Regulatory Commissions should license more new projects than new technologies The challenge of having more direct air capture technologies than buyers Recommended resources Catalyst: The cost of nuclear Latitude Media: Is large-scale nuclear poised for a comeback? Catalyst: Seeking the holy grail of batteries Catalyst: Growing the carbon dioxide removal market Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Anza, a revolutionary platform enabling solar and energy storage equipment buyers and developers to save time, increase profits, and reduce risk. Instantly see pricing, product, and counterparty data and comparison tools. Learn more at go.anzarenewables.com/latitude. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enSeptember 12, 2024

    The rise of climate adaptation tech

    The rise of climate adaptation tech
    Cutting emissions is essential to avoiding the worst of climate change, but we also have to deal with the impacts of climate change happening now. Fortunately, there’s a growing list of technologies that could help us adapt — and potentially turn a profit for investors, too. Will these emerging adaptation and resilience (A&R) technologies take off as an investment category? In this episode, Shayle talks to Katie MacDonald, co-founder and managing partner at Tailwind. They talk about the areas of application – like wildfire prevention, air filtration, health monitoring, and more – that are attracting the attention of governments, corporations, and investors. But the space is young and still needs metrics and definitions, which is why Tailwind developed a taxonomy of A&R themes and sectors and plans to release an “innovation playbook” with market insights in the fall.  Shayle and Katie cover topics like: Defining the scope of A&R  Attracting resilience-curious investors to the space The co-benefits with mitigation How to measure the success of A&R Growing demand signals from governments, such as California’s climate risk disclosure requirements Recommended resources Tailwind: Taxonomy for Climate Adaptation and Resilience Activities S&P Global: Risky Business: Companies' Progress On Adapting To Climate Change Bloomberg Law: States Forge Ahead on Climate Disclosures as SEC’s Plan Drags on Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enSeptember 05, 2024

    Why are we still flaring gas?

    Why are we still flaring gas?
    Oil producers waste a lot of natural gas. Last year they flared 150 billion cubic meters of associated gas into the atmosphere, equivalent to about half the global carbon emissions of aviation over a 30-year period. So why are oil producers burning a valuable commodity like gas? In this episode, Shayle talks to Tomás de Oliveira Bredariol, an energy and environmental policy analyst focused on methane at the IEA. So far, multiple major global initiatives haven’t made a dent in flare volumes, which have remained largely flat since 2010. Shayle and Tomás talk about the reasons why and the potential solutions, covering topics like: The nine countries responsible for about three quarters of flare volumes Why we don’t just build more pipelines Why oil wells may choose expensive diesel instead of powering their equipment with associated gas Converting gas into more valuable forms, like compressed natural gas, liquid natural gas, or methanol The potential for regulation and financial incentives to push producers to cut flare volumes Recommended resources International Energy Agency: Curtailing Methane Emissions from Fossil Fuel Operations National Renewable Energy Laboratory: Stranded Natural Gas Roadmap World Bank: Global Gas Flaring Data Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enAugust 29, 2024

    Hunting for geologic hydrogen

    Hunting for geologic hydrogen
    Hydrogen has two big problems: cost and supply. As a low-carbon feedstock, it could decarbonize planes, industry, and power plants. It could even replace the oil in plastics and chemicals. But the leading contenders for low-carbon hydrogen production — like using zero-carbon power for electrolysis and methane pyrolysis — just haven’t cut it yet. So far, the price points are too high and the scale of production is too low to spur a hydrogen revolution. But instead of synthesizing hydrogen, what if we pumped naturally-occurring hydrogen reservoirs out of the ground, just like we drill for oil and natural gas? In this episode, Shayle talks about geologic hydrogen with Pete Johnson, CEO of Koloma. Early estimates suggest vast quantities of the gas could be tapped for far cheaper than other production methods. That is, if some major challenges are solved, like finding economically viable reserves, managing leakage, and building infrastructure. In these early days, those are all big ifs.  A handful of startups are exploring geologic hydrogen, and Koloma, which has raised $300 million, is the most prominent in the space. (Shayle invests in Koloma and serves on its board. Prelude Ventures, which led Latitude Media’s fundraising round, also invests in Koloma.) Shayle and Pete cover topics like: The key factors that lead to reservoirs of geologic hydrogen, like water, iron-rich rock, traps, and seals Why geologic hydrogen could become the cheapest form of hydrogen, if found in large, economically viable reservoirs The greenhouse gas impact of hydrogen, which interferes with the breakdown of methane in the atmosphere Why Pete thinks that economically viable wells will attract new infrastructure, like clean ammonia plants, the way Houston attracted oil infrastructure Stimulating geologic hydrogen production by injecting water into rock What sort of watershed moment would prove the viability of geologic hydrogen Recommended resources Latitude Media: Should we be paying more attention to geologic hydrogen? US Geological Survey: The Potential for Geologic Hydrogen for Next Generation Energy Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enAugust 23, 2024

    The cost of nuclear

    The cost of nuclear
    Editor’s note: There’s new interest in nuclear power from electric utilities, the White House, and the public. While NuScale’s deal to build a small modular reactor failed last year, TerraPower is currently building the U.S.’s first advanced non-light water reactor in Wyoming. So we’re revisiting an episode from last November with The Good Energy Collective’s Dr. Jessica Lovering unpacking one of nuclear’s biggest challenges: cost. Nuclear construction costs in the U.S. are some of the highest in the world. Recent estimates put the cost of building conventional nuclear reactors at more than $6,000 per kilowatt, as measured by overnight capital cost. But high costs are a problem for new small modular reactors (SMRs) too, killing what was going to be the country’s first SMR before it got built. Meanwhile, South Korea has some of the lowest costs in the world. Estimated overnight capital costs for reactors in South Korea are closer to $2,200 per kilowatt.And then there are countries like China, France, and the United Arab Emirates that fall between those extremes. So why the wide range in costs?  In this episode, Shayle talks to Dr. Jessica Lovering, co-founder and executive director at the Good Energy Collective, a non-profit that researches and promotes policies that support nuclear power. A former director of energy at the Breakthrough Institute, she also authored a comprehensive study of nuclear construction costs in 2016.  Shayle and Jessica talk about things like: What goes into the cost of construction and South Korea’s secret sauce for low-cost nuclear reactors Why Jessica thinks we should manufacture and regulate reactors like large aircraft Driving down costs with modularity, small reactors, passive safety features, and more construction  Why changing regulations might be necessary, but not a silver bullet  Why the pro- and anti-nuclear camps talk past each other — and why Jessica says she’s somewhere in between  Recommended Resources: Latitude Media: Is large-scale nuclear poised for a comeback? Energy Policy: Historical construction costs of global nuclear power reactors National Academy of Engineering: Chasing Cheap Nuclear: Economic Trade-Offs for Small Modular Reactors Joule: Evaluating the Role of Unit Size in Learning-by-Doing of Energy Technologies Science: Granular technologies to accelerate decarbonization Canary: Future of small reactors at stake as NuScale deal flops Catalyst is brought to you by Anza, a revolutionary platform enabling solar and energy storage equipment buyers and developers to save time, increase profits, and reduce risk. Instantly see pricing, product, and counterparty data and comparison tools. Learn more at go.anzarenewables.com/latitude. Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enAugust 15, 2024

    Frontier Forum: Is America’s green bank ready?

    Frontier Forum: Is America’s green bank ready?
    America’s green bank – officially known as the Greenhouse Gas Reduction Fund – is ramping up. Thanks to the Inflation Reduction Act, the federal government is sending $27 billion to a network of non-profit organizations, state green banks, and local private lenders to fund distributed energy projects.  The pressure is on to invest those dollars quickly and efficiently. The GGRF won’t be considered successful if it only deploys that $27 billion – it will be successful if it catalyzes 5x more in capital deployment.  That means building a transparent market with uniform lending standards for CDFIs and local banks – lenders that may be touching solar, storage or other distributed energy deals for the very first time.  The money is headed out the door. Are lenders ready to deploy it?  This week, we're featuring a conversation with Amanda Li of Banyan Infrastructure and Billy Briscoe of the Clean Energy Fund of Texas. It was recorded live as part of Latitude Media's Frontier Forum series.  We'll unpack the details, the urgency, any potential gaps, and the stakes for building a market. This episode was produced in collaboration with Banyan Infrastructure. Read more of Banyan’s insights into the GGRF here.
    Catalyst with Shayle Kann
    enAugust 13, 2024

    Understanding the transmission bottleneck

    Understanding the transmission bottleneck
    Editor’s note: There’s momentum behind permitting reform in the U.S. Congress right now. It could mean unstopping a serious bottleneck in climate tech — transmission. So we’re revisiting an episode from last May with Grid Strategies’ Rob Gramlich to understand how we got here, the impacts on climate tech, and the potential fixes.  The U.S. power grid is clogged, and it’s holding back the energy transition.  Solar and wind farms are waiting four or more years to connect to the grid. Rising congestion costs are driving up retail electricity prices while hurting generator revenues. And the process of approving projects for interconnection is so complicated and expensive that it’s forcing developers to abandon the projects they were planning to build.  We need much more transmission capacity and a better process for connecting projects. And we need it now more than ever. Demand for power will skyrocket as we connect EVs, heat pumps and other new loads to the grid. But Rob Gramlich, our guest today, comes with good news: We did it before. We can do it again.  Rob is the founder and president of Grid Strategies. In this episode, Shayle and Rob talk through the three major challenges of transmission – congestion, interconnection, and buildout. And Rob explains how we’ve built out transmission in the past with efforts like ERCOT’s Competitive Renewable Energy Zones (CREZ) and MISO’s Multi-Value Projects (MVPs). They also cover topics like: The history of transmission buildout in the U.S. The three P’s of transmission challenges: planning, permitting, and paying How congestion costs might shoot up over the next few years as grid capacity lags behind generation, causing new generation to slow and retail electricity prices to go up Reforming the slow, complex, and expensive approval process for interconnection at the Federal Energy Regulatory Commission How the backed up interconnection queue leads developers to submit speculative projects, hoping for one project, but filing six to see what they get Where local opposition fits into transmission’s larger problems Recommended Resources: Grid Strategies: Transmission Congestion Costs in the U.S. RTOs Grid Strategies: Fewer New Miles: The U.S. Transmission Grid in the 2010s E&E News: Senators line up to support permitting package Recommended resources Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enAugust 08, 2024

    Pathways to decarbonizing steel

    Pathways to decarbonizing steel
    Little-known fact: The primary product of steel mills is CO2. A conventional blast furnace produces almost two tons of carbon dioxide for every ton of steel. And with almost two billion tons of steel produced annually — roughly 500 pounds for every human, every year — that’s a lot of carbon: about 8% of global energy system emissions. And yet, steel is vital for vast parts of the economy, including the energy transition itself.  So why does steel production emit so much CO2? And what are the pathways to fixing it? In this episode, Shayle talks to Rebecca Dell, senior director of the industry program at the Climateworks Foundation. They cover topics like: How steelmaking generates emissions from both heat and the production process itself Why coal is so useful for blast furnaces, and why natural gas can’t fully replace it Why recycling cuts emissions but hits a ceiling Direct reduced iron, which uses methane or hydrogen and requires high-quality ore Less-developed but promising alternatives: molten oxide electrolysis and aqueous electrolysis, which can use low-quality ore The limits of carbon capture and storage and material substitution The major players building DRI facilities, like SSAB, ThyssenKrupp, and Salzgitter Recommended resources Canary Media: US pledges up to $1B for two pioneering ​‘green steel’ projects Latitude Media: H2's $5B fundraise is a 'test case' for financing green steel Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.
    Catalyst with Shayle Kann
    enAugust 02, 2024

    The EV market’s awkward teenage years

    The EV market’s awkward teenage years
    Automakers got ahead of their skis. EV sales are up globally and in the U.S., but growth has been slower than expected and uneven. After enjoying a wave of growth driven by early adopters, automakers overestimated demand of more cautious consumers and ended up producing more than buyers wanted. Now auto dealers are slashing prices to move cars off the lot. So how did the market get here? And how can EVs appeal to the next wave of consumers? In this episode, Shayle talks to Gene Berdichevsky, co-founder and CEO of anode material manufacturer Sila Nanotechnologies. Shayle and Gene cover topics like: How high-performance cells can lead to lower-cost batteries Why Gene says lithium-iron-phosphate may hit a ceiling in the market The potential of sodium-ion batteries Who can take advantage of production overcapacity The limitations of the Inflation Reduction Act in the face of weak demand  How manufacturing is competing with other major loads, like data centers, for electricity  Solving the challenges of vehicle-to-grid Recommended resources Bloomberg: The Slowdown in US Electric Vehicle Sales Looks More Like a Blip The Wall Street Journal: EVs Are Cheaper Than Ever. Can Car Buyers Be Won Over? Catalyst: What’s really happening in the US EV market? Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.

    Can chip efficiency slow AI's energy demand?

    Can chip efficiency slow AI's energy demand?
    In March, Nvidia announced a new microchip designed for AI that is 25 times more energy efficient than its predecessor. Two months later, Google announced one with a 67% efficiency improvement. Today, the rest of the semiconductor industry is hyper focused on efficiency gains. Will they save us from ballooning data center energy demands? In this episode, Shayle talks to Christian Belady, former Microsoft vice president now focusing on data center advanced development. They unpack concerns about this new surge of demand and whether it’s different from the energy scare two decades ago. Back in 1999, researchers predicted that data centers could end up consuming half of U.S. electricity. But instead, demand remained largely flat at about 4% as cutting-edge hyperscale cloud computing displaced inefficient, on-premises servers. And yet, driven by the AI boom, energy concerns are back. The Electric Power Research Institute predicts that data center loads could consume 9% of U.S. power generation by 2030. Demand is already rising fast, with emissions at both Google and Microsoft up significantly.  Shayle and Christian examine the factors driving those trends and what we can do about it, covering topics like: Whether chip efficiency improvements will lead to energy savings or just more powerful computing The upper limits of Moore’s Law Energy, labor, and other big constraints on AI growth Changing computing architecture to find energy savings Enlisting data centers in integrated, or compulsory, demand response Using AI to improve chip design  Recommended resources Fierce Electronics: Power-hungry AI chips face a reckoning, as chipmakers promise ‘efficiency’ Latitude Media: The data center of the future looks like a massive virtual power plant Latitude Media: Enchanted Rock is selling utilities on flexible data center connection Latitude Media: Energy is now the ‘primary bottleneck’ for AI Catalyst: Under the hood of data center power demand Catalyst is brought to you by Anza Renewables, a data, technology, and services platform for solar and storage buyers. Anza’s real-time market intel equips buyers with the essential data they need to get the best deals. Download Anza’s free Q2 Module Pricing Insights Report at go.anzarenewables.com/latitude  Catalyst is brought to you by Kraken, the advanced operating system for energy. Kraken is helping utilities offer excellent customer service and develop innovative products and tariffs through the connection and optimization of smart home energy assets. Already licensed by major players across the globe, including Origin Energy, E.ON, and EDF, Kraken can help you create a smarter, greener grid. Visit kraken.tech. Catalyst is brought to you by Antenna Group, the global leader in integrated marketing, public relations, creative, and public affairs for energy and climate brands. If you're a startup, investor, or enterprise that's trying to make a name for yourself, Antenna Group's team of industry insiders is ready to help tell your story and accelerate your growth engine. Learn more at antennagroup.com.